USN

Fifth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Aerodynamics – I

Time: 3 hrs. Max: Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. State the law of conservation of mass. Derive an expression for one-dimensional form of continuity equation.

 (06 Marks)
 - b. Define and explain the compressibility.

(04 Marks)

- c. Define mach number. Explain the classification of the flow regimes based on mach number with a neat sketch. (10 Marks)
- 2 a. Obtain the relation between stream function and yelocity potential stating its inference.

(04 Marks)

- b. Define the following:
 - (i) Path line
- (ii) Stream line
- (iii) Streak line.

- (06 Marks)
- c. Derive the integral form of momentum equation for a control volume fixed in space.

(10 Marks)

- 3 a. With a neat sketch, explain in detail the airfoil normenclature. (06 Marks)
 - b. Derive an expression for axial force co-efficient (C_a) and normal force co-efficient (C_n) of an airfoil. (10 Marks)
 - Consider an airfoil at 12° angle of attack. The normal and axial force coefficients are 1.2 and 0.03 respectively. Calculate the lift and drag coefficients.
 (04 Marks)
- 4 a. Derive the Euler's equation of motion. Hence deduce the Bernoulli's equation. Discuss its applications. (12 Marks)
 - b. If for a 2-dimensional flow, the stream function is given by, $\psi = 2xy$, calculate the velocity at the point (3, 6). Show that the velocity potential ' ϕ ' exist for this case and deduce it.

(08 Marks)

PART - B

- 5 a. Obtain an expression for the following for a lifting flow over cylinder:
 - (i) Stream function (ψ)
- (ii) Location of stagnation points
- (iii) Pressure co-efficient

Also explain with a neat sketch, the location of stagnation points for different values of Γ .

b. What is Kutta-Joukowski theorem? Obtain an expression for the same and explain with neat sketch.
 (08 Marks)

- 6 a. Write short notes on the following:
 - (i) Kutta condition.
- (ii) Kelvin's circulation theorem.

(10 Marks)

b. Consider a NACA 230/2 airfoil. The mean camber line for the airfoil is given by,

$$\frac{Z}{C} = 2.6595 \left[\left(\frac{u}{C} \right)^3 - 0.6075 \left(\frac{u}{C} \right)^2 + 0.1147 \left(\frac{u}{C} \right) \right] \text{ for } 0 \le \frac{x}{C} \le 0.2025 \text{ and}$$

$$\frac{Z}{C} = 0.02208 \left[1 - \frac{X}{C} \right]$$
 for $0.2025 \le \frac{X}{C} \le 1$

Calculate (i) The angle of attack at zero lift.

(ii) The lift co-efficient when $\alpha = 4^{\circ}$

(10 Marks)

- 7 a. Write down the Navier-Stokes equation.
- (06 Marks)

- b. Define and obtain the expressions for,
 - (i) Boundary layer thickness.
 - (ii) Displacement thickness.
 - (iii) Momentum thickness.

(09 Marks)

(10 Marks)

c. Explain the boundary layer separation of an airfoil.

- (05 Marks)
- 8 a. With a neat sketch, explain the operation of open and closed circuit low speed wind tunnel.
 (10 Marks)
 - b. Explain in detail the smoke and tuft flow visualization techniques.

* * * * *